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1. Introduction

Newtonian fluids are defined to be those fluids exhibiting
a direct proportionality between stress t and strain rate ¥ in
laminar flow, that is

T = uy (1)

where the viscosity u is independent of the strain rate although it
might be affected by other physical parameters, such as
temperature and pressure, for a given fluid system [1,2]. All those
fluids for which the proportionality between stress and strain rate
is violated, due to nonlinearity or initial yield-stress, are said to be
non-Newtonian. Some of the most characteristic features of non-
Newtonian behavior are strain- and time-dependent viscosity,
yield-stress, and stress relaxation. Non-Newtonian fluids are
commonly divided into three broad groups: time-independent,
viscoelastic and time-dependent. However, in reality these classi-
fications are often by no means distinct or sharply defined [1,2].
Those fluids that exhibit a combination of properties from more
than one of the above groups are described as complex fluids [3],
though this term may be used for non-Newtonian fluids in general.
A large number of rheological models have been proposed in the
literature to model all types of non-Newtonian fluids under diverse
flow conditions. However, the majority of these models are basi-
cally empirical in nature and arise from curve-fitting exercises [4]. A
few prominent examples of the non-Newtonian models from the
three groups are presented in Table 1.
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1.1. Time-independent fluids

Time-independent fluids are those for which the strain rate at
a given point is solely dependent upon the instantaneous stress at
that point. Shear rate dependence is one of the most important and
defining characteristics of non-Newtonian fluids in general and time-
independent fluids in particular. When a typical non-Newtonian fluid
experiences a shear flow the viscosity appears to be Newtonian at low
shear rates. After this initial Newtonian plateau the viscosity is found
to vary with increasing shear rate. The fluid is described as shear-
thinning or pseudoplastic if the viscosity decreases, and shear-
thickening or dilatant if the viscosity increases on increasing shear
rate. After this shear-dependent regime, the viscosity reaches
alimiting constant value at high shear rate. This region is described as
the upper Newtonian plateau. If the fluid sustains initial stress
without flowing, it is called a yield-stress fluid. Almost all polymer
solutions that exhibit a shear rate dependent viscosity are shear-
thinning, with relatively few polymer solutions demonstrating
dilatant behavior. Moreover, in most known cases of shear-thick-
ening there is a region of shear-thinning at lower shear rates [4—6].

Fig. 1 demonstrates the six principal rheological classes of the
time-independent fluids in shear flow. These represent shear-
thinning, shear-thickening and shear-independent fluids each with
and without yield-stress. It is worth noting that these rheological
classes are idealizations as the rheology of these fluids is generally
more complex and they can behave differently under various
deformation and ambient conditions. Prominent examples of the
time-independent fluid models are: power-law, Ellis, Carreau and
Herschel-Bulkley. These are widely used in modeling non-New-
tonian fluids of this group [7].
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Table 1
Examples of non-Newtonian rheological models.
Model Equation
Power-Law w = Cy"!
Ellis Ho
b= a—1
4GS
Carreau [r— Ho — Moo

1+ (7t

Herschel-Bulkley T = 7o+ CY"(t > 10)

Maxwell g id® g
13 = HoY
Jeffreys ot .0y
T+hg = uo(y+A2§)
Upper Convected Maxwell THMT = Ho¥
= v
Oldroyd-B T+/11¥ = o (¥ + 227)
iy w(e) = iy — D' (1= et/7) — Ap(1 —e=7)

Stretched Exponential Model w(t) = fi + (Iing — 1) (1 — e~ (/2

V upper convected time derivative, o. rheological parameter, ¥ rate of strain, y rate of
strain tensor, A; relaxation time, A, retardation time, 2’ A" As; time constants, u
viscosity, u; initial-time viscosity, uinr infinite-time viscosity, u, zero-shear viscosity,
ke infinite-shear viscosity, Ay’ Au” viscosity deficits, t stress, t stress tensor, 712
stress when u = p,/2, 7, yield-stress, ¢ dimensionless constant, C consistency factor,
n flow behavior index, t time, t. characteristic time of flow system.

1.2. Viscoelastic fluids

Viscoelastic fluids are those that show partial elastic recovery
upon the removal of a deforming stress. Such materials possess
properties of both viscous fluids and elastic solids. Polymeric fluids
often show strong viscoelastic effects. These include shear-thin-
ning, extension-thickening, normal stresses, and time-dependent
rheology. No theory is yet available that can adequately describe all
of the observed viscoelastic phenomena in a variety of flows.
Nonetheless, many differential and integral constitutive models
have been proposed in the literature to describe viscoelastic flow.
What is common to all these is the presence of at least one char-
acteristic time parameter to account for the fluid memory, that is
the stress at the present time depends upon the strain or rate of
strain for all past times, but with a fading memory [6,8—11].

Broadly speaking, viscoelasticity is divided into two major fields:
linear and nonlinear. Linear viscoelasticity is the field of rheology
devoted to the study of viscoelastic materials under very small strain
or deformation where the displacement gradients are very small and
the flow regime can be described by a linear relationship between
stress and rate of strain. In principle, the strain has to be sufficiently
small so that the structure of the material remains unperturbed by
the flow history. If the strain rate is small enough, deviation from

Shear thickening with yield stress
Bingham plastic
Shear thinning with yield stress

Shear thickening (dilatant)
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Shear thinning (pseudoplastic)
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Fig. 1. The six main classes of the time-independent fluids presented in a generic
graph of stress against strain rate in shear flow.

linear viscoelasticity may not occur at all. The equations of linear
viscoelasticity are not valid for deformations of arbitrary magnitude
and rate because they violate the principle of frame invariance. The
validity of linear viscoelasticity when the small-deformation
condition is satisfied with alarge magnitude of rate of strain is still an
open question, though it is widely accepted that linear viscoelastic
constitutive equations are valid in general for any strain rate as long
as the total strain remains small. Nevertheless, the higher the strain
rate the shorter the time at which the critical strain for departure
from linear regime is reached [5,12,13].

The linear viscoelastic models have several limitations. For
example, they cannot describe strain rate dependence of viscosity
or normal stress phenomena since these are nonlinear effects. Due
to the restriction to infinitesimal deformations, the linear models
may be more appropriate for the description of viscoelastic solids
rather than viscoelastic fluids. Despite the limitations of the linear
viscoelastic models and despite being of less interest to the study of
flow where the material is usually subject to large deformation,
they are very important in the study of viscoelasticity for several
reasons [5,12,14]:

e They are used to characterize the behavior of viscoelastic
materials at small deformations.

e They serve as a motivation and starting point for developing
nonlinear models since the latter are generally extensions to
the linears.

e They are used for analyzing experimental data obtained in
small deformation experiments and for interpreting important
viscoelastic phenomena, at least qualitatively.

The two most prominent linear viscoelastic fluid models are the
Maxwell and Jeffreys.

Nonlinear viscoelasticity is the field of rheology devoted to the
study of viscoelastic materials under large deformation, and hence it
is the subject of primary interest to the study of flow of viscoelastic
fluids. Nonlinear viscoelastic constitutive equations are sufficiently
complex that very few flow problems can be solved analytically.
Moreover, there appears to be no differential or integral constitutive
equation general enough to explain the observed behavior of poly-
meric systems undergoing large deformations but still simple
enough to provide a basis for practical applications [1,5,15].

As the linear viscoelasticity models are not valid for deforma-
tions of large magnitude because they do not satisfy the principle of
frame invariance, Oldroyd and others tried to extend these models
to nonlinear regimes by developing a set of frame-invariant
constitutive equations. These equations define time derivatives in
frames that deform with the material elements. Examples include
rotational, upper and lower convected time derivatives. The idea of
these derivatives is to express the constitutive equation in real
space coordinates rather than local coordinates and hence fulfilling
the Oldroyd’s admissibility criteria for constitutive equations. These
admissibility criteria ensure that the equations are invariant under
a change of coordinate system, value invariant under a change of
translational or rotational motion of the fluid element as it goes
through space, and value invariant under a change of rheological
history of neighboring fluid elements [5,14].

There is a large number of rheological equations proposed for
the description of nonlinear viscoelasticity, as a quick survey to the
literature reveals. However, many of these models are extensions or
modifications to others. The two most popular nonlinear visco-
elastic models in differential form are the Upper Convected
Maxwell and the Oldroyd-B models. Figs. 2—4 display several
aspects of the rheology of viscoelastic fluids in bulk and in situ. In
Fig. 2 a stress versus time graph reveals a distinctive feature of time
dependency largely observed in viscoelastic fluids. As seen, the
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Fig. 2. Typical time-dependence behavior of viscoelastic fluids due to delayed
response and relaxation following a step increase in strain rate.

overshoot observed on applying a sudden deformation cycle
relaxes eventually to the equilibrium steady-state. This time-
dependent behavior has an impact not only on the flow develop-
ment in time, but also on the dilatancy behavior observed in porous
media flow under steady-state conditions, as will be examined in
Section 4. Fig. 3 reveals another characteristic feature of visco-
elasticity observed in porous media flow. The intermediate plateau
may be attributed to the time-dependent nature of the viscoelastic
fluid when the relaxation time of the fluid and the characteristic
time of the flow become comparable in size. This behavior may also
be attributed to thixotropic buildup and breakdown due to sudden
change in radius and hence rate of strain on passing through the
converging—diverging pores. Fig. 4 presents another typical feature
of viscoelastic fluids. In addition to the low-deformation Newtonian
plateau and the shear-thinning region which are widely observed
in many time-independent fluids and modeled by various time-
independent rheological models, there is a thickening region which
is believed to be originating from the dominance of extension over
shear at high flow rates. This feature is mainly observed in the flow
through porous media, and the converging—diverging geometry is
usually given as an explanation for the shift in dominance from
shear to extension at high flow rates [4—6].

1.3. Time-dependent fluids

Time-dependent fluids are those for which the strain rate is
a function of both the magnitude and the duration of stress and

High plateau

Intermediate plateau

Viscosity

Low plateau

(In situ)

Rate of Strain

Fig. 3. Intermediate plateau typical of in situ viscoelastic behavior due to time character-
istics of the fluid and flow system and converging—diverging nature of the flow channels.
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Fig. 4. Strain hardening at high strain rates typical of in situ viscoelastic flow attributed
to the dominance of extension over shear at high flow rates.

possibly of the time lapse between consecutive applications of
stress. It is generally recognized that there are two main types of
time-dependent fluids: thixotropic (work softening) and rheopec-
tic (work hardening or anti-thixotropic) depending upon whether
the stress decreases or increases with time at a given strain rate and
constant temperature. There is also a general consensus that the
time-dependent feature is caused by reversible structural change
during the flow process. However, there are many controversies
about the details, and the theory of time-dependent fluids is not
well developed. Many models have been proposed in the literature
to describe the complex rheological behavior of time-dependent
fluids. These include Godfrey and the Stretched Exponential Model.
In Fig. 5 the two basic classes of time-dependent fluids are pre-
sented and compared to the time-independent fluid in a graph of
stress versus time of deformation under constant strain rate
condition. As seen, thixotropy is the equivalent in time to shear-
thinning, while rheopexy is the equivalent in time to shear-thick-
ening [4,16].

2. Modeling the flow of fluids
The basic equations describing the flow of fluids consist of the
basic laws of continuum mechanics which are the conservation

principles of mass, energy and linear and angular momentum.
These governing equations indicate how the mass, energy and

Rheopectic
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Fig. 5. The two classes of time-dependent fluids compared to the time-independent
presented in a generic graph of stress against time.
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momentum of the fluid change with position and time. The basic
equations have to be supplemented by a suitable rheological
equation of state, or constitutive equation describing a particular
fluid, which is a differential or integral mathematical relationship
that relates the extra stress tensor to the rate of strain tensor in
general flow condition and closes the set of governing equations.
One then solves the constitutive model together with the conser-
vation laws using a suitable method to predict the velocity and
stress field of the flow. In the case of Navier—Stokes flows the
constitutive equation is the Newtonian stress relation as given in
Equation (1). In the case of more rheologically complex flows other
non-Newtonian constitutive equations, such as Ellis and Oldroyd-B,
should be used to bridge the gap and obtain the flow fields. To
simplify the situation, several assumptions are usually made about
the flow and the fluid. Common assumptions include laminar,
incompressible, steady-state and isothermal flow. The last
assumption, for instance, makes the energy conservation equation
redundant [5,11,17—20].

The constitutive equation should be frame-invariant. Conse-
quently, sophisticated mathematical techniques are employed to
satisfy this condition. No single choice of constitutive equation is
best for all purposes. A constitutive equation should be chosen
considering several factors such as the type of flow (shear or
extension, steady or transient, etc.), the important phenomena to
capture, the required level of accuracy, the available computational
resources and so on. These considerations can be influenced
strongly by personal preference or bias. Ideally the rheological
equation of state is required to be as simple as possible, involving
the minimum number of variables and parameters, and yet having
the capability to predict the behavior of complex fluids in complex
flows. So far, no constitutive equation has been developed that can
adequately describe the behavior of complex fluids in general flow
situation [6,14].

2.1. Modeling the flow in porous media

In the context of fluid flow, ‘porous medium’ can be defined as
a solid matrix through which small interconnected cavities occu-
pying a measurable fraction of its volume are distributed. These
cavities are of two types: large ones, called pores and throats, which
contribute to the bulk flow of fluid; and small ones, comparable to
the size of the molecules, which do not have an impact on the bulk
flow though they may participate in other transportation
phenomena like diffusion. The complexities of the microscopic pore
structure are usually avoided by resorting to macroscopic physical
properties to describe and characterize the porous medium. The
macroscopic properties are strongly related to the underlying
microscopic structure. The best known examples of these properties
are the porosity and the permeability. The first describes the relative
fractional volume of the void space to the total volume while the
second quantifies the capacity of the medium to transmit fluid.
Another important property is the macroscopic homogeneity which
may be defined as the absence of local variation in the relevant
macroscopic properties, such as permeability, on a scale comparable
to the size of the medium under consideration. Most natural and
synthetic porous media have an element of inhomogeneity as the
structure of the porous medium is typically very complex with
a degree of randomness and can seldom be completely uniform.
However, as long as the scale and magnitude of these variations have
anegligible impact on the macroscopic properties under discussion,
the medium can still be treated as homogeneous. The mathematical
description of the flow in porous media is extremely complex and
involves many approximations. So far, no analytical fluid mechanics
solution to the flow through porous media has been developed.
Therefore, to investigate the flow through porous media other

methodologies have been developed; the main ones are the
continuum approach, the bundle of tubes approach, numerical
methods and pore-scale network modeling. These approaches are
outlined in the following sections with particular emphasis on the
flow of non-Newtonian fluids [21-23].

2.1.1. Continuum models

These widely used models represent a simplified macroscopic
approach in which the porous medium is treated as a continuum. All
the complexities and fine details of the microscopic pore structure
are absorbed into bulk terms like permeability that reflect average
properties of the medium. Semi-empirical equations such as Darcy’s
law, Blake-Kozeny-Carman or Ergun equation fall into this category.
Commonly used forms of these equations are given in Table 2.
Several continuum models are based in their derivation on the
capillary bundle concept which will be discussed in the next section.

Darcy’s law in its original form is a linear Newtonian model that
relates the local pressure gradient in the flow direction to the fluid
superficial velocity (i.e. volumetric flow rate per unit cross sectional
area) through the viscosity of the fluid and the permeability of the
medium. Darcy’s law is the simplest model for describing the flow in
porous media, and is widely used for this purpose. Although Darcy’s
law is an empirical relation, it can be derived from the capillary
bundle model using Navier—Stokes equation via homogenization
(i.e. up-scaling microscopic laws to a macroscopic scale). Different
approaches have been proposed for the derivation of Darcy’s law
from first principles. However, theoretical analysis reveals that most
of these rely basically on the momentum balance equation of the
fluid phase. Darcy’s law is applicable to laminar flow at low Reynolds
number as it contains only viscous term with no inertial term.
Typically any flow with a Reynolds number less than one is laminar.
As the velocity increases, the flow enters a nonlinear regime and the
inertial effects are no longer negligible. The linear Darcy’s law may
also breakdown if the flow becomes vanishingly slow as interaction
between the fluid and the pore walls can become important. Darcy
flow model also neglects the boundary effects and heat transfer. In
fact the original Darcy model neglects all effects other than viscous
Newtonian effects. Therefore, the validity of Darcy’s law is restricted
to laminar, isothermal, purely viscous, incompressible Newtonian
flow. Darcy’s law has been modified differently to accommodate
more complex phenomena such as non-Newtonian and multi-
phase flow. Various generalizations to include nonlinearities like
inertia have also been derived using homogenization or volume
averaging methods [24,25].

Blake-Kozeny-Carman (BKC) model for packed bed is one of the
most popular models in the field of fluid dynamics to describe the
flow through porous media. It encompasses a number of equations
developed under various conditions and assumptions with obvious
common features. This family of equations correlates the pressure
drop across a granular packed bed to the superficial velocity using
the fluid viscosity and the bed porosity and granule diameter. It is
also used for modeling the macroscopic properties of random
porous media such as permeability. These semi-empirical relations
are based on the general framework of capillary bundle with

Table 2
Commonly used forms of the three popular continuum models.
Model Equation
Darcy AP puq
T K
Blake-Kozeny-Carman AP 72C'ug(1 — €)?
T~ D
Ergun AP 150pq (1-¢? . 1.75pq% (1 —¢)
L D e Dp a3




T. Sochi / Polymer 51 (2010) 5007—5023 5011

various levels of sophistication. Some forms in this family envisage
the bed as a bundle of straight tubes of complicated cross section
with an average hydraulic radius. Other forms depict the porous
material as a bundle of tortuous tangled capillary tubes for which
the equation of Navier—Stokes is applicable. The effect of tortuosity
on the average velocity in the flow channels gives more accurate
portrayal of non-Newtonian flow in real beds. The BKC model is
valid for laminar flow through packed beds at low Reynolds
number where kinetic energy losses caused by frequent shifting of
flow channels in the bed are negligible. Empirical extension of this
model to encompass transitional and turbulent flow conditions has
been reported in the literature [26,28].

Ergun equation is a semi-empirical relation that links the
pressure drop along a packed bed to the superficial velocity. It is
widely used to portray the flow through porous materials and to
model their physical properties. The input to the equation is the
properties of the fluid (viscosity and mass density) and the bed
(length, porosity and granule diameter). Another, and very popular,
form of Ergun equation correlates the friction factor to the Reynolds
number. This form is widely used for plotting experimental data
and may be accused of disguising inaccuracies and defects. While
Darcy and Blake-Kozeny-Carman contain only viscous term, the
Ergun equation contains both viscous and inertial terms. The
viscous term is dominant at low flow rates while the inertial term is
dominant at high flow rates. As a consequence of this duality, Ergun
can reach flow regimes that are not accessible to Darcy or BKC. A
proposed derivation of the Ergun equation is based on a superpo-
sition of two asymptotic solutions, one for very low and one for
very high Reynolds number flow. The lower limit, namely the BKC
equation, is quantitatively attributable to a fully developed laminar
flow in a three-dimensional porous structure, while in the higher
limit the empirical Burke—Plummer equation for turbulent flow is
applied [29—31].

The big advantage of the continuum approach is having
a closed-form constitutive equation that describes the highly
complex phenomenon of flow through porous media using a few
simple compact terms. Consequently, the continuum models are
easy to use with no computational cost. Nonetheless, the
continuum approach suffers from a major limitation by ignoring
the physics of flow at pore level. Regarding non-Newtonian flow,
most of these continuum models have been employed with some
pertinent modification to accommodate non-Newtonian behavior.
A common approach for single-phase flow is to find a suitable
definition for the effective viscosity which will continue to have the
dimensions and physical significance of Newtonian viscosity [32].
However, many of these attempts, theoretical and empirical, have
enjoyed limited success in predicting the flow of rheologically
complex fluids in porous media. Limitations of the non-Newtonian
continuum models include failure to incorporate transient time-
dependent effects and to model yield-stress. Some of these issues
will be examined in the coming sections.

2.1.2. Capillary bundle models

In the capillary bundle models the flow channels in a porous
medium are depicted as a bundle of tubes. The simplest form is the
model with straight, cylindrical, identical parallel tubes oriented in
a single direction. Darcy’s law combined with Poiseuille’s law give
the following relationship for the permeability of this model.

2
K — % )

where K and ¢ are the permeability and porosity of the bundle
respectively, and R is the radius of the tubes. The advantage of using
this simple model, rather than other more sophisticated models, is

its simplicity and clarity. A limitation of the model is its disregard to
the morphology of the pore space and the heterogeneity of the
medium, as it fails to reflect the complex features of the void space.
In fact the morphology of even the simplest medium cannot be
accurately depicted by this capillary model as the geometry and
topology of real void space have no similarity to a uniform bundle
of tubes. The model also ignores the highly tortuous character of
the flow paths in real porous media with an important impact on
the flow resistance and pressure field. Tortuosity should also have
consequences on the behavior of elastic and yield-stress fluids.
Moreover, as it is a unidirectional model its application is limited to
simple one-dimensional flow situations [26,33].

One important structural feature of real porous media that is not
reflected in this model is the converging—diverging nature of the
pore space which has a significant influence on the flow of visco-
elastic and yield-stress fluids. Although this simple model may be
adequate for modeling some cases of slow flow of purely viscous
fluids through porous media, it does not allow the prediction of an
increase in the pressure drop when used with a viscoelastic
constitutive equation. Presumably, the converging—diverging
nature of the flow field gives rise to an additional pressure drop, in
excess to that due to shearing forces, since porous media flow
involves elongational flow components. Therefore, a corrugated
capillary bundle should be used for modeling such complex flow
fields [32,34].

Ignoring the converging—diverging nature of flow channels,
among other geometrical and topological features, can also be
a source of failure for this model with respect to yield-stress fluids.
As a straight bundle of capillaries disregards the complex
morphology of the pore space and because the yield depends on
the actual geometry and connectivity not on the flow conductance,
the simple bundle model will certainly fail to predict the yield point
and flow rate of yield-stress fluids in porous media. An obvious
failure of this model is that it predicts a universal yield point at
a particular pressure drop, whereas in real porous media yield is
a gradual process. Furthermore, possible bond aggregation effects
due to the connectivity and size distribution of the flow paths in
porous media are completely ignored in this model. Another limi-
tation of this simple model is that the permeability is considered in
the direction of flow only, and hence may not correctly correspond
to the permeability of the porous medium especially when it is
anisotropic. The model also fails to consider the pore size distri-
butions. Though this factor may not be of relevance in some cases
where the absolute permeability is of interest, it can be important
in other cases such as yield-stress and certain phenomena associ-
ated with two-phase flow [34,35].

To remedy the flaws of the uniform bundle of tubes model and
to make it more realistic, several elaborations have been suggested
and used; these include

e Using a bundle of capillaries of varying cross sections. This has
been employed by Sadowski and Bird [36] and other investi-
gators. In fact the model of corrugated capillaries is widely used
especially for modeling viscoelastic flow in porous media to
account for the excess pressure drop near the con-
verging—diverging regions. The converging—diverging feature
may also be used when modeling the flow of yield-stress fluids
in porous media.

Introducing an empirical tortuosity factor or using a tortuous
bundle of capillaries. For instance, in the Blake-Kozeny-Carman
model a tortuosity factor of 25/12 has been used and some
forms of the BKC assumes a bundle of tangled capillaries
[26,37]

To account for the three-dimensional flow, the model can be
improved by orienting 1/3 of the capillaries in each of the three
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spatial dimensions. The permeability, as given by Equation (2),
will therefore be reduced by a factor of 3 [35].

e Subjecting the bundle radius size to a statistical distribution
that mimics the size distribution of the real porous media to be
modeled by the bundle.

Capillary bundle models have been widely used in the investi-
gation of Newtonian and non-Newtonian flow through porous
media with various levels of success. Past experience, however,
reveals that no single capillary model can be successfully applied in
diverse structural and rheological situations. The capillary bundle
should therefore be designed and used with reference to the situ-
ation in hand. It should be remarked that the capillary bundle
model is better suited for describing porous media that are
unconsolidated and have high permeability. This is in line with the
fact that the capillary bundle is an appropriate model for a rela-
tively simple porous medium with comparatively plain structure
[38].

2.1.3. Numerical methods

In the numerical approach, a detailed description of the porous
medium at pore-scale with the relevant physics at this level is used.
To solve the flow field, numerical methods, such as finite volume
and finite difference, usually in conjunction with computational
implementation are utilized. The advantage of the numerical
methods is that they are the most direct way to describe the
physical situation and the closest to full analytical solution. They
are also capable, in principle at least, to deal with time-dependent
transient situations. The disadvantage is that they require a detailed
pore space description. Moreover, they are very complex and hard
to implement with a huge computational cost and serious
convergence difficulties. Due to these complexities, the flow
processes and porous media that are currently within the reach of
numerical investigation are the most simple ones. These methods
are also in use for investigating the flow in capillaries with various
geometries as a first step for modeling the flow in porous media
and the effect of corrugation on the flow field [39,40].

2.14. Pore-scale network modeling

Pore-scale network modeling is a relatively novel method that
has been developed to deal with the flow through porous media
and other related issues. It can be seen as a compromise between
the two extremes of continuum and numerical approaches as it
partly accounts for the physics of flow and void space structure at
pore level with affordable computational resources. Network
modeling can be used to describe a wide range of properties from
capillary pressure characteristics to interfacial area and mass
transfer coefficients. The void space is described as a network of
flow channels with idealized geometry. Rules that determine the
transport properties in these channels are incorporated in the
network to compute effective properties on a mesoscopic scale. The
appropriate pore-scale physics combined with a representative
description of the pore space gives models that can successfully
predict average behavior [41,42].

Various network modeling methodologies have been developed
and used. The general feature is the representation of the pore
space by a network of interconnected ducts (bonds or throats) of
regular shape and the use of a simplified form of the flow equations
to describe the flow through the network. A numerical solver is
usually employed to solve a system of simultaneous equations to
determine the flow field. The network can be two-dimensional or
three-dimensional with a random or regular lattice structure such
as cubic. The shape of the cylindrical ducts includes circular, square
and triangular cross section (possibly with different shape factor)
and may include converging—diverging feature. The network

elements may contain, beside the conducting ducts, nodes (pores)
that can have zero or finite volume and may well serve a function in
the flow phenomena or used as junctions to connect the bonds. The
simulated flow can be Newtonian or non-Newtonian, single-phase,
two-phase or even three-phase. The physical properties of the flow
and porous medium that can be obtained from flow simulation
include absolute and relative permeability, formation factor, resis-
tivity index, volumetric flow rate, apparent viscosity, threshold
yield pressure and much more. Typical size of the network is a few
millimeters. One reason for this minute size is to reduce the
computational cost. Another reason is that this size is sufficient to
represent a homogeneous medium having an average throat size of
the most common porous materials. Up-scaling the size of
a network is a trivial task if larger pore size is required. Moreover,
extending the size of a network model by attaching identical copies
of the same model in any direction or imposing repeated boundary
conditions is another simple task [7,43].

The general strategy in network modeling is to use the bulk
rheology of the fluid and the void space description of the porous
medium as an input to the model. The flow simulation in a network
starts by modeling the flow in a single capillary. The flow in a single
capillary can be described by the following general relation.

Q = GAP (3)

where Q is the volumetric flow rate, G’ is the flow conductance and
APis the pressure drop. For a particular capillary and a specific fluid,
G’ is given by [44]

G’ = G'(n) = constant Newtonian fluid
G = G (u,AP) Purely viscous non — Newtonian fluid
G = G (u,AP,t) Fluid with memory

(4)

For a network of capillaries, a set of equations representing the
capillaries and satisfying mass conservation has to be solved
simultaneously to find the pressure field and other physical quan-
tities. A numerical solver is usually employed in this process. For
a network with n nodes there are n equations in n unknowns. These
unknowns are the pressure values at the nodes. The essence of
these equations is the continuity of flow of incompressible fluid at
each node in the absence of sources and sinks. To find the pressure
field, this set of equations has to be solved subject to the boundary
conditions which are the pressures at the inlet and outlet of the
network. This unique solution is ‘consistent’ and ‘stable’ as it is the
only mathematically acceptable solution to the problem, and,
assuming the modeling process and the mathematical technicali-
ties are reliable, should mimic the unique physical reality of the
pressure field in the porous medium [44].

For Newtonian fluid, a single iteration is needed to solve the
pressure field as the flow conductance is known in advance because
the viscosity is constant. For purely viscous non-Newtonian fluid,
the process starts with an initial guess for the viscosity, as it is
unknown and pressure-dependent, followed by solving the pres-
sure field iteratively and updating the viscosity after each iteration
cycle until convergence is reached. For memory fluids, the depen-
dence on time must be taken into account when solving the pres-
sure field iteratively. There is no general strategy to deal with this
situation. However, for the steady-state flow of memory fluids of
elastic nature a sensible approach is to start with an initial guess for
the flow rate and iterate, considering the effect of the local pressure
and viscosity variation due to converging—diverging geometry,
until convergence is achieved [45].

With regards to modeling the flow in porous media of complex
fluids that have time dependency in a dynamic sense due to
thixotropic or elastic nature, there are three major difficulties
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e The difficulty of tracking the fluid elements in the pores and
throats and identifying their deformation history, as the path
followed by these elements is random and can have several
unpredictable outcomes.

e Mixing of fluid elements with various deformation history in
the individual pores and throats. As a result, the viscosity is not
a well defined property of the fluid in the pores and throats.

e Change of viscosity along the streamline since the deformation
history is continually changing over the path of each fluid
element.

These difficulties can be ignored when dealing with cases of
steady-state flow. Despite all these complications, network
modeling in its current state is a simplistic approach that models
the flow in ideal situations. Most network models rely on various
simplifying assumptions and disregard important physical
processes that have strong influence on the flow. One such
simplification is the use of geometrically uniform network
elements to represent the flow channels. Viscoelasticity and yield-
stress are among the physical processes that are compromised by
this idealization of void space. Another simplification is the disso-
ciation of various flow phenomena. For example, in modeling the
flow of yield-stress fluids through porous media an implicit
assumption is usually made that there is no time dependency or
viscoelasticity. This assumption, however, can be reasonable in the
case of modeling the dominant effect and may be valid in practical
situations where other effects are absent or insignificant. A third
simplification is the adoption of no-slip-at-wall condition. This
widely accepted assumption means that the fluid at the boundary is
stagnant relative to the solid boundary. The effect of slip, which
includes reducing shear-related effects and influencing yield-stress
behavior, is very important in certain circumstances and cannot be
ignored. However, this assumption is not far from reality in many
other situations. Furthermore, wall roughness, which is the rule in
porous media, usually prevents wall slip or reduces its effect. Other
physical phenomena that can be incorporated in the network
models to make it more realistic include retention (e.g. by
adsorption or mechanical trapping) and wall exclusion. Most
current network models do not take account of these phenomena
[44,46).

3. Yield-stress

Yield-stress or viscoplastic fluids are characterized by their
ability to sustain shear stresses, that is a certain amount of stress
must be exceeded before the flow initiates. So an ideal yield-stress
fluid is a solid before yield and a fluid after. Accordingly, the
viscosity of the substance changes from an infinite to a finite value.
However, the physical situation indicates that it is more realistic to
regard a yield-stress substance as a fluid whose viscosity as
a function of applied stress has a discontinuity as it drops sharply
from a very high value on exceeding a critical stress. There are many
controversies and unsettled issues in the non-Newtonian literature
about yield-stress phenomenon and yield-stress fluids. In fact, even
the concept of a yield-stress has received much recent criticism,
with evidence presented to suggest that most materials weakly
yield or creep near zero strain rate. The supporting argument is that
any material will flow provided that one waits long enough. These
conceptual difficulties are backed by practical and experimental
complications. For example, the value of yield-stress for a particular
fluid is difficult to measure consistently and it may vary by more
than an order of magnitude depending on the measurement
technique. Several constitutive equations to describe liquids with
yield-stress are in use; the most popular ones are Bingham, Casson
and Herschel-Bulkley. Some have suggested that the yield-stress

values obtained via such models should be considered model
parameters and not real material properties [5,12,47,48].

There are several difficulties in working with yield-stress fluids
and validating the experimental data. One difficulty is that yield-
stress value is usually obtained by extrapolating a plot of shear
stress to zero shear rate [12,49,50]. This can result in a variety of
values for yield-stress, depending on the distance from the shear
stress axis experimentally accessible by the instrument used. The
vast majority of yield-stress data reported results from such
extrapolations, making most values in the literature instrument-
dependent. Another method used to measure yield-stress is by
lowering the shear rate until the shear stress approaches
a constant. This may be described as the dynamic yield-stress. The
results obtained using such methods may not agree with the static
yield-stress measured directly without disturbing the microstruc-
ture during the measurement. The latter is more relevant to the
flow initiation under gradual increase in pressure gradient as in
the case of flow in porous media. Consequently, the accuracy of the
predictions made using flow simulation models in conjunction
with such experimental data is limited [12,13].

Another difficulty is that while in the case of pipe flow the yield-
stress value is a property of the fluid, in the case of flow in porous
media there are strong indications that in a number of situations it
may depend on both the fluid and the porous medium itself. One
possible explanation is that yield-stress value may depend on the
size and shape of the pore space when the polymer molecules
become comparable in size to the pore. The implicit assumption
that yield-stress value at pore-scale is the same as the value at bulk
may not be self evident. This makes the predictions of the models
based on analytical solution to the flow in a uniformly-shaped tube
combined with the bulk rheology less accurate. When the duct size
is small, as it is usually the case in porous media, flow of macro-
molecule solutions normally displays deviations from predictions
based on corresponding viscometric data. Moreover, the highly
complex shape of flow paths in porous media must have a strong
impact on the actual yield point, and this feature is lost by modeling
these paths with ducts of idealized geometry. Consequently, the
concept of equivalent radius Req, which is used in network
modeling, though is completely appropriate for Newtonian fluids
and reasonably appropriate for purely viscous non-Newtonian
fluids with no yield-stress, seems inappropriate for yield-stress
fluids as yield depends on the actual shape of the void space rather
than the equivalent radius and flow conductance [51-53].

3.1. Modeling yield-stress in porous media

In this section we outline the failure of the four approaches for
modeling the flow through porous media in dealing with the flow
of yield-stress fluids. It is apparent that no continuum model can
predict the yield point of a yield-stress fluid in complex porous
media. The reason is that these models do not account for the
complex geometry and topology of the void space. As the yield
point depends on the fine details of the pore space structure, no
continuum model is expected to predict the threshold yield pres-
sure (TYP) of yield-stress fluids in porous media. The continuum
models also fail to predict the flow rate, at least at transition stage
where the medium is partly conducting, because according to these
models the medium is either fully blocked or fully flowing whereas
in reality the yield in porous medium is a gradual process.

Regarding the capillary bundle models, the situation is similar to
the continuum models as they predict a single universal yield if
a uniform bundle of capillaries is assumed. Moreover, because all
capillary bundle models fail to capture the topology and geometry
of complex porous media they cannot predict the yield point and
describe the flow rate of yield-stress fluids in porous media since



5014 T. Sochi / Polymer 51 (2010) 5007—5023

yield is highly dependent on the fine details of the void space. An
important aspect of the geometry of real porous media which
strongly affects the yield point and flow rate of yield-stress fluids is
the converging—diverging nature of the flow paths. This feature is
not reflected by the bundle of uniform capillaries models. Another
feature is the connectivity of the flow channels where bond
aggregation (i.e. how the throats are distributed and arranged)
strongly affects yield behavior.

Concerning the application of numerical methods to yield-stress
fluids in porous media, very few studies can be found on this
subject (e.g. [54]). Moreover, the results, which are reported only
for very simple cases of porous media, cannot be fully assessed.
Therefore, network modeling is the most viable candidate for
modeling yield-stress fluids in porous media. However, because the
research in this field is limited, no final conclusion on the merit of
this approach can be reached. Nonetheless, the modest success in
modeling yield-stress as experienced by some investigators (e.g.
Balhoff [55] and Sochi [44]) indicates that network modeling in its
current state is not capable of dealing with such a complex
phenomenon. One possible reason is the comparative simplicity of
the rheological models, such as Bingham, used in these investiga-
tions. These models can possibly offer a phenomenological
description of yield-stress in simple flow situations but are
certainly unable to accommodate the underlying physics at pore
level in complex porous media. Consequently, yield-stress as
a model parameter obtained in bulk viscometry may not be
appropriate to use in this complex situation. Another reason is the
experimental difficulties associated with yield-stress fluids. This
can make the experimental results subject to complications, such as
viscoelasticity and retention, that may not be accounted for in the
network model. A third reason is the relative simplicity of the
current network modeling approach to yield-stress fluids. This is
supported by the fact that better results are usually obtained for
non-yield-stress fluids using the same network modeling tech-
niques. One major limitation of the current network models with
regard to yield-stress fluids is the use of analytical expressions for
cylindrical tubes based on the concept of equivalent radius Req. This
is far from reality where the void space retains highly complex
shape and connectivity. Consequently, the yield condition for
cylindrical capillaries becomes invalid approximation to the yield
condition for the intricate flow paths in porous media.

In summary, yield-stress fluid results are extremely sensitive to
how the fluid is characterized, how the void space is described and
how the yield process is modeled. In the absence of a comprehen-
sive and precise incorporation of all these factors in the network
model, pore-scale modeling of yield-stress fluids in porous media
remains a crude approximation that may not produce quantita-
tively sensible predictions. The final conclusion is that yield-stress
is a problematic phenomenon, and hence very modest success has
been achieved in this area by any one of the four modeling
approaches.

3.2. Predicting threshold yield pressure (TYP)

Here we discuss the attempts to predict the yield point of
a complex porous medium from the void space description and
yield-stress value of an ideal yield-stress fluid without modeling
the flow process. In the literature of yield-stress we can find two
well developed methods proposed for predicting the yield point of
a morphologically-complex network that depicts a porous
medium; these are the Minimum Threshold Path (MTP) and the
percolation theory. In this regard, there is an implicit assumption
that the network is an exact replica of the medium and the yield-
stress value reflects the yield-stress of real fluid so that any failure
of these algorithms cannot be attributed to mismatch or any factor

other than flaws in these algorithms. It should be remarked that the
validity of these methods could be tested by experiment [56,57].

Predicting the threshold yield pressure of a yield-stress fluid in
porous media in its simplest form may be regarded as a special case
of the more general problem of finding the threshold conducting
path in disordered media that consist of elements with randomly
distributed thresholds. This problem was analyzed by Roux and
Hansen [58] in the context of studying the conduction of an electric
network of diodes by considering two different cases, one in which
the path is directed (no backtracking) and one in which it is not.
They suggested that the minimum overall threshold potential
difference across the network is akin to a percolation threshold and
investigated its dependence on the lattice size. Kharabaf and
Yortsos [59] noticed that a firm connection of the lattice-threshold
problem to percolation appears to be lacking and the relation of the
Minimum Threshold Path (MTP) to the minimum path of percola-
tion, if it indeed exists, is not self evident. They presented a new
algorithm, Invasion Percolation with Memory (IPM), for the
construction of the MTP, based on which its properties can be
studied. The Invasion Percolation with Memory method was
further extended by Chen et al. [60] to incorporate dynamic effects
due to viscous friction following the onset of mobilization [61—-63].

The IPM is an algorithm for finding the inlet-to-outlet path that
minimizes the sum of values of a property assigned to the indi-
vidual elements of the network, and hence finding this minimum.
For a yield-stress fluid, this reduces to finding the inlet-to-outlet
path that minimizes the yield pressure. The yield pressure of this
path is then taken as the network threshold yield pressure. A
detailed description of this algorithm is given in [44,59]. Other
algorithms that achieve this minimization process can be found in
the literature. However, they all rely on a similar assumption to that
upon which the IPM is based, that is the threshold yield pressure of
a network is the minimum sum of the threshold yield pressures of
the individual elements of all possible paths from the inlet to the
outlet.

There are two possibilities for defining yield-stress fluids before
yield: either solid-like substances or liquids with very high
viscosity. According to the first, the most sensible way for modeling
a presumed pressure gradient inside a medium is to be a constant,
that is the pressure drop across the medium is a linear function of
the spatial coordinate in the flow direction, as any other assump-
tion needs justification. Whereas in the second case the fluid
should be treated like non-yield-stress fluids and hence the pres-
sure field inside the porous medium should be subject to the
consistency criterion for the pressure field which was introduced
earlier. The logic is that the magnitude of the viscosity should have
no effect on the flow conduct as long as the material is assumed to
be fluid [44].

Several arguments can be presented against the MTP algorithms
for predicting the yield point of a medium or a network. Though
certain arguments may be more obvious for a network with
cylindrical ducts, they are valid in general for regular and irregular
geometries of flow channels. Some of these arguments are outlined
below.

e The MTP algorithms are based on the assumption that the
threshold yield pressure (TYP) of an ensemble of serially con-
nected bonds is the sum of their yield pressures. This
assumption can be challenged by the fact that for a non-
uniform ensemble (i.e. an ensemble whose elements have
different TYPs) the pressure gradient across the ensemble
should reach the threshold yield gradient of the bottleneck (i.e.
the element with the highest TYP) of the ensemble if yield
should occur. Consequently, the TYP of the ensemble will be
higher than the sum of the TYPs of the individual elements.
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This argument may be more obvious if yield-stress fluids are
regarded as solids and a linear pressure drop is assumed.

e Assuming the yield-stress substances before yield are fluids
with high viscosity, the dynamic aspects of the pressure field
are neglected because the aim of the MTP algorithms is to find
a collection of bonds inside the network with a certain condi-
tion based on the intrinsic properties of these elements irre-
spective of the pressure field. The reality is that the bonds are
part of a network that is subject to a pressure field, so the
pressure across each individual element must comply with
a dynamically stable pressure configuration over the whole
network. The MTP algorithms rely for justification on a hidden
assumption that the minimum sum condition is identical or
equivalent to the stable configuration condition, which is not
obvious, because it is highly improbable that a stable config-
uration will require a pressure drop across each element of the
path of minimum sum that is identical to the threshold yield
pressure of that element. Therefore, it is not clear that the
actual path of yield must coincide, totally or partially, with the
path of the MTP algorithms let alone that the actual value of
yield pressure must be predicted by these methods. To sum up,
these algorithms disregard the global pressure field which can
communicate with the internal nodes of the serially connected
ensemble as it is part of a network and not an isolated collec-
tion of bonds. It is not obvious that the condition of these
algorithms should agree with the requirement of a stable and
mathematically consistent pressure filed as defined in Section
2.1. Such an agreement should be regarded as an extremely
improbable coincidence.

e The MTP algorithms that allow backtracking have another
drawback that is in some cases the path of minimum sum
requires a physically unacceptable pressure configuration. This
may be more obvious if the yield-stress substances are
assumed to be solid before yield though it is still valid with the
fluid assumption.

o The effect of tortuosity is ignored since it is implicitly assumed
that the path of yield is an ensemble of serially connected and
linearly-aligned tubes, whereas in reality the path is generally
tortuous as it is part of a network and can communicate with
the global pressure field through the intermediate nodes. The
effect of tortuosity, which is more obvious for the solid
assumption, is a possible increase in the external threshold
pressure gradient and a possible change in the bottleneck.

Concerning the percolation approach, it is tempting to consider
the conduct of yield-stress fluids in porous media as a percolation
phenomenon to be analyzed by the classical percolation theory.
However, three reasons, at least, may suggest otherwise

e The conventional percolation models can be applied only if the
conducting elements are homogeneous, i.e. it is assumed in
these models that the intrinsic property of all elements in the
network are equal. However, this assumption cannot be justi-
fied for most kinds of media where the elements vary in their
conduction and yield properties. Therefore, to apply percola-
tion principles, a generalization to the conventional percolation
theory is needed as suggested by Selyakov and Kadet [64].

e The network elements cannot yield independently as a span-
ning path bridging the inlet to the outlet is a necessary
condition for yield. This contradicts the percolation theory
assumption that the elements conduct independently.

e The pure percolation approach ignores the dynamic aspects of
the pressure field, that is a stable pressure configuration is
a necessary condition which may not coincide with the simple
percolation requirement.

In a series of studies on generation and mobilization of foam in
porous media, Rossen et al. [65,66] analyzed the threshold yield
pressure using percolation theory concepts and suggested a simple
percolation model. In this model, the percolation cluster is first
found, then the MTP was approximated as a subset of this cluster
that samples those bonds with the smallest individual thresholds
[60]. This approach relies on the validity of applying percolation
theory to yield-stress, which is disputed. Moreover, it is a mere
coincidence if the yield path is contained within the percolation
sample. Yield is an on/off process which critically depends on
factors other than smallness of individual thresholds. These factors
include the particular distribution and configuration of these
elements, being within a larger network and hence being able to
communicate with the global pressure field, and the dynamic
aspects of the pressure field and stability requirement. Any
approximation, therefore, has very little meaning in this context.

4. Viscoelasticity

Viscoelastic substances exhibit a dual nature of behavior by
showing signs of both viscous fluids and elastic solids. In its most
simple form, viscoelasticity can be modeled by combining
Newton'’s law for viscous fluids (stress o« rate of strain) with Hook’s
law for elastic solids (stress « strain), as given by the original
Maxwell model and extended by the Convected Maxwell models
for the nonlinear viscoelastic fluids. Although this idealization
predicts several basic viscoelastic phenomena, it does so only
qualitatively. The behavior of viscoelastic fluids is drastically
different from that of Newtonian and inelastic non-Newtonian
fluids. This includes the presence of normal stresses in shear flows,
sensitivity to deformation type, and memory effects such as stress
relaxation and time-dependent viscosity. These features underlie
the observed peculiar viscoelastic phenomena such as rod-climbing
(Weissenberg effect), die swell and open-channel siphon. Most
viscoelastic fluids exhibit shear-thinning and an elongational
viscosity that is both strain and extensional strain rate dependent,
in contrast to Newtonian fluids where the elongational viscosity is
constant and in proportion to shear viscosity [14,67].

The behavior of viscoelastic fluids at any time is dependent on
their recent deformation history, that is they possess a fading
memory of their past. Indeed a material that has no memory cannot
be elastic, since it has no way of remembering its original shape.
Consequently, an ideal viscoelastic fluid should behave as an elastic
solid in sufficiently rapid deformations and as a Newtonian liquid in
sufficiently slow deformations. The justification is that the larger
the strain rate, the more strain is imposed on the sample within the
memory span of the fluid. Many materials are viscoelastic but at
different time scales that may not be reached. Dependent on the
time scale of the flow, viscoelastic materials show mainly viscous or
elastic behavior. The particular response of a sample in a given
experiment depends on the time scale of the experiment in relation
to a natural time of the material. Thus, if the experiment is rela-
tively slow, the sample will appear to be viscous rather than elastic,
whereas, if the experiment is relatively fast, it will appear to be
elastic rather than viscous. At intermediate time scales mixed
viscoelastic response is observed. Therefore the concept of a natural
time of a material is important in characterizing the material as
viscous or elastic. The ratio between the material time scale and the
time scale of the flow is indicated by a non-dimensional number:
the Deborah or the Weissenberg number [4,5,14,67].

A common feature of viscoelastic fluids is stress relaxation after
a sudden shearing displacement where stress overshoots to
a maximum then starts decreasing exponentially and eventually
settles to a steady-state value. This phenomenon also takes place on
cessation of steady shear flow where stress decays over a finite
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measurable length of time. This reveals that viscoelastic fluids are
able to store and release energy in contrast to inelastic fluids which
react instantaneously to the imposed deformation. A defining
characteristic of viscoelastic materials associated with stress
relaxation is the relaxation time which may be defined as the time
required for the shear stress in a simple shear flow to return to zero
under constant strain condition. Hence for a Hookean elastic solid
the relaxation time is infinite, while for a Newtonian fluid the
relaxation of the stress is immediate and the relaxation time is zero.
Relaxation times which are infinite or zero are never realized in
reality as they correspond to the mathematical idealization of
Hookean elastic solids and Newtonian liquids. In practice, stress
relaxation after the imposition of constant strain condition takes
place over some finite non-zero time interval [5,6,8,14].

The complexity of viscoelasticity is phenomenal and the subject
is notorious for being extremely difficult and challenging. The
constitutive equations for viscoelastic fluids are much too complex
to be treated in a general manner. Further complications arise from
the confusion created by the presence of other phenomena such as
wall effects and polymer—wall interactions, and these appear to be
system specific. Therefore, it is doubtful that a general fluid model
capable of predicting all the flow responses of viscoelastic systems
with enough mathematical simplicity or tractability can emerge in
the foreseeable future. Understandably, despite the huge amount of
literature composed in the last few decades on this subject, the
overwhelming majority of these studies have investigated very
simple cases in which substantial simplifications have been made
using basic viscoelastic models [8,27,68,69].

In the last few decades, a general consensus has emerged that in
the flow of viscoelastic fluids through porous media elastic effects
should arise, though their precise nature is unknown or contro-
versial. In porous media, viscoelastic effects can be important in
certain cases. When they are, the actual pressure gradient will
exceed the purely viscous gradient beyond a critical flow rate, as
observed by several investigators. The normal stresses of high
molecular polymer solutions can explain in part the high flow
resistance encountered during viscoelastic flow through porous
media. It is believed that the very high normal stress differences
and Trouton ratios associated with polymeric fluids will produce
increasing values of apparent viscosity when the flow channels in
the porous medium are of rapidly changing cross section.

Important aspects of non-Newtonian flow in general and
viscoelastic flow in particular through porous media are still pre-
senting serious challenge for modeling and quantification. There
are intrinsic difficulties in characterizing non-Newtonian effects in
the flow of polymer solutions and the complexities of the local
geometry of the porous medium. This geometry gives rise to
a complex and pore space dependent flow field in which shear and
extension coexist in various proportions that cannot be quantified.
Flows through porous media cannot be classified as pure shear
flows as the converging—diverging passages impose a predomi-
nantly extensional flow fields especially at high flow rates. The
extension viscosity of many non-Newtonian fluids also increases
dramatically with the extension rate. As a consequence, the rela-
tionship between the pressure drop and flow rate very often do not
follow the observed Newtonian and inelastic non-Newtonian trend.
Further complications arise from the fact that for complex fluids the
stress depends not only on whether the flow is a shearing, exten-
sional, or mixed type, but also on the whole history of the velocity
gradient [13,32,70—73].

4.1. Important aspects for flow in porous media

Strong experimental evidence indicates that the flow of visco-
elastic fluids through packed beds can exhibit rapid increases in the

pressure drop, or an increase in the apparent viscosity, above that
expected for a comparable purely viscous fluid. This increase has
been attributed to the extensional nature of the flow field in the
pores caused by the successive expansions and contractions that
a fluid element experiences as it traverses the pore space. Although
the flow field at pore level is not an ideal extensional flow due to
the presence of shear and rotation, the increase in flow resistance is
referred to as an extension-thickening effect [33,73—75]. In this
regard, two major interrelated aspects have strong impact on the
flow through porous media. These are extensional flow and con-
verging—diverging geometry.

4.1.1. Extensional flow

One complexity in the flow in general and through porous
media in particular arises from the coexistence of shear and
extensional components, sometimes with the added complication
of inertia. Pure shear or elongational flow is the exception in
practical situations. In most situations mixed flow occurs where
deformation rates have components parallel and perpendicular to
the principal flow direction. In such flows, the elongational
components may be associated with the converging—diverging
flow paths [4,35]. A general consensus has emerged recently that
the flow through packed beds has a substantial extensional
component and typical polymer solutions exhibit strain hardening
in extension, which is one of the main factors for the reported
dramatic increases in pressure drop. Thus in principle the shear
viscosity alone is inadequate to explain the observed excessive
pressure gradients. It is interesting therefore to know the relative
importance of elastic and viscous effects or the relationship
between normal and shear stresses for different shear rates [12,27].

An extensional or elongational flow is one in which fluid
elements are subjected to extensions and compressions without
being rotated or sheared. The study of the extensional flow in
general as a relevant variable has only received attention in the last
few decades with the realization that extensional flow is of
significant relevance in many practical situations. Before that,
rheology was largely dominated by shear flow. The historical
convention of matching only shear flow data with theoretical
predictions in constitutive modeling should be rethought in those
areas of interest where there is a large extensional contribution.
Extensional flow experiments can be viewed as providing critical
tests for any proposed constitutive equations [4,8,13,76].

Extensional flow is fundamentally different from shear flow. The
material property characterizing the extensional flow is not the
viscosity but the extensional viscosity. The behavior of the exten-
sional viscosity function is often qualitatively different from that of
the shear viscosity. For example, highly elastic polymer solutions
that possess a viscosity that decreases monotonically in shear often
exhibit an extensional viscosity that increases dramatically with
extension rate. Thus, while the shear viscosity is shear-thinning, the
extensional viscosity is extension-thickening [4,13]. The exten-
sional or elongational viscosity uy, also called Trouton viscosity, is
defined as the ratio of tensile stress to the extension rate under
steady flow condition where both these quantities attain constant
values. Mathematically, it is given by

e = £ (5)
&
where 1 (=711 — 722) is the normal stress difference and ¢ is the
extension rate. The stress 71 is in the direction of the extension
while 15 is in a direction perpendicular to the extension [4,77].
Polymeric fluids show a non-constant extensional viscosity in
steady and unsteady extensional flow. In general, extensional
viscosity is a function of the extensional strain rate, just as the shear
viscosity is a function of shear rate. It is far more difficult to
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measure the extensional viscosity than the shear viscosity. There is
therefore a gulf between the strong desire to measure extensional
viscosity and the likely expectation of its fulfillment [4,14]. A major
difficulty that hinders the progress in this field is that it is difficult
to achieve steady elongational flow and quantify it precisely.
Despite the fact that many techniques have been developed for
measuring the elongational flow properties, these techniques failed
so far to produce consistent outcome as they generate results which
can differ by several orders of magnitude. This indicates that these
results are dependent on the method and instrument of measure-
ment. This is highlighted by the view that the extensional
viscometers provide measurements of an extensional viscosity
rather than the extensional viscosity. The situation is made more
complex by the fact that it is almost impossible to generate a pure
extensional flow since a shear component is always present in real
flow situations, and this makes the measurements doubtful and
inconclusive [2,4,5,12,13,72].

For Newtonian and inelastic non-Newtonian fluids the exten-
sional viscosity is a constant that only depends on the type of
extensional deformation. Moreover, the viscosity measured in
a shear flow can be used to predict the viscosity in other types of
deformation. For example, in a simple uniaxial extensional flow of
a Newtonian fluid the following relationship is satisfied

x = 3uo (6)

For viscoelastic fluids the flow behavior is more complex and
the extensional viscosity, like the shear viscosity, depends on both
the strain rate and the time following the onset of straining. The
rheological behavior of a complex fluid in extension is often very
different from that in shear. Polymers usually have extremely high
extensional viscosities which can be orders of magnitude higher
than those expected on the basis of Newtonian model. Moreover,
the extensional viscosities of elastic polymer solutions can be
thousands of times greater than their shear viscosities. To measure
the departure of the ratio of extensional to shear viscosity from its
Newtonian equivalent, the rheologists have introduced what is
known as the Trouton ratio which is usually defined as

- ﬂx(é)
Tr = —,us <\/§€) (7)

For elastic liquids, the Trouton ratio is expected to be always
greater than or equal to 3, with the value 3 only attained at
vanishingly small strain rates. These liquids are known for having
very high Trouton ratios that can be as high as 10%. This conduct is
expected especially when the fluid combines shear-thinning with
tension-thickening. However, even for the fluids that demonstrate
tension-thinning the associated Trouton ratios usually increase
with strain rate and are still significantly in excess of the inelastic
value of three [4,6,13,14,76,78].

Figs. 6 and 7 compare the shear viscosity to the extensional
viscosity at isothermal condition for a typical viscoelastic fluid at
various shear and extension rates. As seen in Fig. 6, the shear
viscosity curve can be divided into three regions. For low shear
rates, compared to the time scale of the fluid, the viscosity is
approximately constant. It then equals the so called zero shear rate
viscosity. After this initial plateau the viscosity rapidly decreases
with increasing shear rate, and this behavior is described as shear-
thinning. However, there are some materials for which the reverse
behavior is observed, that is the shear viscosity increases with
shear rate giving rise to shear-thickening. For high shear rates the
viscosity often approximates a constant value again. The constant
viscosity extremes at low and high shear rates are known as the
lower and upper Newtonian plateau, respectively [4,5,14].

Shear Viscosity

Shear Rate

Fig. 6. Typical behavior of shear viscosity us as a function of shear rate ¥ in shear flow
on log—log scales.

In Fig. 7 the typical behavior of the extensional viscosity, uy, of
a viscoelastic fluid as a function of extension rate, ¢, is depicted. As
seen, the extensional viscosity curve can be divided into several
regions. At low extension rates the extensional viscosity maintains
a constant value known as the zero extension rate extensional
viscosity. This is usually three times the zero shear rate viscosity,
just as for a Newtonian fluid. For somewhat larger extension rates
the extensional viscosity increases with increasing extension rate.
Some viscoelastic fluids behave differently, that is their extensional
viscosity decreases on increasing extension rate in this regime. A
fluid for which uy increases with increasing ¢ is said to be tension-
thickening, whilst if uy decreases with increasing ¢ it is described as
tension-thinning. For even higher extension rates the extension
viscosity reaches a maximum constant value. If the extension rate is
increased once more the extensional viscosity may decrease again.
It should be remarked that two polymeric liquids that may have
essentially the same behavior in shear can show a different
response in extension [4—6,13].

4.12. Converging—diverging geometry

An important aspect that characterizes the flow in porous media
and makes it distinct from bulk is the presence of con-
verging—diverging flow paths. This geometric factor significantly
affects the flow and accentuates elastic responses. Several argu-
ments have been presented in the literature to explain the effect of

Extensional Viscosity

Extension Rate

Fig. 7. Typical behavior of extensional viscosity uy as a function of extension rate ¢ in
extensional flow on log—log scales.
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converging—diverging geometry on the flow behavior. One argu-
ment is that viscoelastic flow in porous media differs from that of
Newtonian flow, primarily because the converging—diverging
nature of flow in porous media gives rise to normal stresses which
are not solely proportional to the local shear rate. A second argu-
ment is that any geometry that involves a diameter change will
generate a flow field with elongational characteristics, and hence
the flow field in porous media involves both shear and elongational
components with elastic responses. A third argument suggests that
elastic effects are expected in the flow through porous media
because of the acceleration and deceleration of the fluid in the
interstices of the bed upon entering and leaving individual pores
[39,49,79].

Despite this diversity, there is a general consensus that in porous
media the converging—diverging nature of the flow paths brings
out both the extensional and shear properties of the fluid. The
principal mode of deformation to which a material element is
subjected as the flow converges into a constriction involves both
a shearing of the material element and a stretching or elongation in
the direction of flow, while in the diverging portion the flow
involves both shearing and compression. The actual channel
geometry determines the ratio of shearing to extensional contri-
butions. In many realistic situations involving viscoelastic flows the
extensional contribution is the most important of the two modes.
As porous media flow involves elongational flow components, the
coil-stretch phenomenon can also take place.

A consequence of the presence of converging—diverging feature
in porous media on flow modeling is that a suitable model pore
geometry is one having converging and diverging sections which
can reproduce the elongational nature of the flow. Despite the
general success of the straight capillary tube model with New-
tonian and inelastic non-Newtonian flows, its failure with elastic
flow is remarkable. To rectify the flaws of this model, the undu-
lating tube and converging—diverging channel were proposed in
order to include the elastic character of the flow. Various corru-
gated tube models with different simple geometries have been
used as a first step to model the effect of converging—diverging
geometry on the flow of viscoelastic fluids in porous media (e.g.
[70,74,80]). Those geometries include conically shaped sections,
sinusoidal corrugation and abrupt expansions and contractions.
Some simplified forms of these geometries are displayed in Fig. 8.
Similarly, a bundle of converging—diverging tubes forms a better
model for a porous medium in viscoelastic flow than the bundle of
straight capillary tubes, as the presence of diameter variations
makes it possible to account for elongational contributions. Many
investigators have attempted to capture the role of successive
converging—diverging character of packed bed flow by numerically
solving the flow equations in conduits of periodically varying cross
sections. Some of these are [8,27,33,39,81]. Different opinions on

Conical Cylindrical
: Paraboloid : Sinusoid

Fig. 8. Examples of corrugated capillaries that can be used to model con-
verging—diverging geometry in porous media.

the success of these models can be found in the literature. With
regards to modeling viscoelastic flow in regular or random
networks of converging—diverging capillaries, very little work has
been done.

4.2. Viscoelastic effects in porous media

In packed bed flows, the main manifestation of steady-state
viscoelastic effects is the excess pressure drop or dilatancy behavior
in different flow regimes above what is accounted for by shear
viscosity of the flowing liquid. Qualitatively, this behavior was
attributed either to memory effects or to extensional flow.
However, both explanations have a place as long as the flow regime
is considered. Furthermore, the geometry of the porous media must
be taken into account when considering elastic responses [27,79].

There is a general agreement that the flow of viscoelastic fluids
in packed beds results in a greater pressure drop than what can be
ascribed to the shear rate dependent viscosity. Fluids that exhibit
elasticity deviate from viscous flow above some critical velocity in
porous flow. At low flow rates, the pressure drop is determined
largely by shear viscosity, and the viscosity and elasticity are
approximately the same as in bulk. As the flow rate gradually
increases, viscoelastic effects begin to appear in various flow
regimes. Consequently, the in situ rheological characteristics
become significantly different from those in bulk as elasticity
dramatically increases showing strong dilatant behavior. Although
experimental evidence for viscoelastic effects is convincing, an
equally convincing theoretical analysis is not available. One general
argument is that when the fluid suffers a significant deformation in
a time comparable to the relaxation time of the fluid, elastic effects
become important [12,27,68,79].

The complexity of viscoelastic flow in porous media is aggra-
vated by the possible occurrence of other non-elastic phenomena
which have similar effects as viscoelasticity. These phenomena
include adsorption of the polymers on the capillary walls,
mechanical retention and partial pore blockage. All these effects
also lead to pressure drops well in excess to that expected from the
shear viscosity levels. Consequently, the interpretation of many
observed effects is controversial. Some authors may interpret some
observations in terms of partial pore blockage whereas others insist
on non-Newtonian effects including viscoelasticity as an explana-
tion. However, none of these have proved to be completely satis-
factory. Moreover, no one can rule out the possibility of
simultaneous occurrence of these elastic and inelastic phenomena
with further complication and confusion. An interesting fact is the
observation made by several researchers, e.g. Sadowski [82], that
reproducible results can be obtained only in constant flow rate
experiments because at constant pressure drop the velocity kept
decreasing. This kind of observation indicates deposition of poly-
mer on the solid surface by one mechanism or another, and cast
doubt on some explanations which involve elasticity. At constant
flow rate the increased pressure drop provides the necessary force
to keep a reproducible portion of the flow channels open
[27,71,83,84].

There are three principal viscoelastic effects that have to be
accounted for in the investigation of viscoelasticity: transient time-
dependence, steady-state time-dependence and dilatancy at high
flow rates.

4.2.1. Transient time-dependence

Transient time-dependent viscoelastic behavior has been
observed in bulk on the startup and cessation of processes
involving the displacement of viscoelastic materials, and on
a sudden change of rate or reversal in the direction of deformation.
During these transient states, there are frequently overshoots and
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undershoots in stress as a function of time which scale with strain.
However, if the fluid is strained at a constant rate, these transients
die out in the course of time, and the stress approaches a steady-
state value that depends only on the strain rate. Under initial flow
conditions stresses can reach magnitudes which are substantially
more important than their steady-state values, whereas the
relaxation on a sudden cessation of strain can vary substantially in
various circumstances [5,12,13,85,86].

Transient responses are usually investigated in the context of
bulk rheology, despite the fact that there is no available theory that
can predict this behavior quantitatively. As a consequence of this
restraint to bulk, the literature of viscoelastic flow in porous media
is almost entirely dedicated to the steady-state situation with
hardly any work on the in situ time-dependent viscoelastic flows.
However, transient behavior is expected to occur in similar situa-
tions during the flow through porous media. One reason for this
gap is the absence of a proper theoretical structure and the
experimental difficulties associated with these flows in situ.
Another possible reason is that the in situ transient flows may have
less important practical applications.

4.2.2. Steady-state time-dependence

By this, we mean the effects that arise in the steady-state flow
due to time dependency, as time-dependence characteristics of the
viscoelastic material must have an impact on the steady-state
conduct. Indeed, elastic effects do occur in steady-state flow
through porous media because of the time-dependence nature of
the flow at pore level. Depending on the time scale of the flow,
viscoelastic materials may show viscous or elastic behavior. The
particular response in a given process depends on the time scale of
the process in relation to a natural time of the material. With regard
to this time scale dependency of viscoelastic flow process at pore
level, the fluid relaxation time and the rate of elongation or
contraction that occurs as the fluid flows through a channel or pore
with varying cross sectional area should be used to characterize and
quantify viscoelastic behavior [4,70,79,87].

Sadowski and Bird [36] analyzed the viscometric flow problem
in a long straight circular tube and argued that in such a flow no
time-dependent elastic effects are expected. However, in a porous
medium elastic effects may occur. As the fluid moves through
a tortuous channel in the porous medium, it encounters a capri-
ciously changing cross section. If the fluid relaxation time is small
with respect to the transit time through a contraction or expansion
in a tortuous channel, the fluid will readjust to the changing flow
conditions and no elastic effects would be observed. If, on the other
hand, the fluid relaxation time is large with respect to the time to go
through a contraction or expansion, then the fluid will not
accommodate and elastic effects will be observed in the form of an
extra pressure drop or an increase in the apparent viscosity. Thus
the concept of a ratio of characteristic times emerges as an ordering
parameter in viscoelastic flow through porous media. This indicates
the importance of the ratio of the natural time of a fluid to the
duration time of a process [83].

One of the steady-state viscoelastic phenomena observed in the
flow through porous media and can be qualified as a time-depen-
dent effect, among other possibilities such as retention, is the
intermediate plateau at medium flow rates as demonstrated in
Fig. 3. A possible explanation is that at low flow rates before the
appearance of the intermediate plateau the fluid behaves inelasti-
cally like any typical shear-thinning fluid. This implies that in the
low flow regime viscoelastic effects are negligible as the fluid can
respond to the local state of deformation almost instantly, that is it
does not remember its past and hence behaves as a purely viscous
fluid. As the flow rate increases, a point will be reached where the
solid-like characteristics of viscoelastic materials begin to appear in

the form of an increased apparent viscosity as the time of process
becomes comparable to the natural time of fluid, and hence
a plateau is observed. At higher flow rates the process time is short
compared to the natural time of the fluid and hence the fluid has no
time to react as the fluid is not an ideal elastic solid that reacts
instantaneously. Since the process time is very short, no overshoot
will occur at the tube constriction as a measurable finite time is
needed for the overshoot to take place. The result is that no increase
in the pressure drop will be observed in this flow regime and the
normal shear-thinning behavior is resumed with the eventual high
flow rate plateau [70,88].

4.2.3. Dilatancy at high flow rates

The third distinctive feature of viscoelastic flow is the dilatant
behavior in the form of excess pressure losses at high flow rates as
depicted in Fig. 4. Certain polymeric solutions that exhibit shear-
thinning in a viscometric flow seem to exhibit a shear-thickening
response under appropriate conditions during flow through porous
media. At high flow rates, abnormal increases in flow resistance
that resemble a shear-thickening response have been observed in
flow experiments involving a variety of dilute to moderately
concentrated solutions of high molecular weight polymers [35,83].
This phenomenon can be attributed to stretch-thickening due to
the dominance of extension over shear flow. At high flow rates,
strong extensional flow effects do occur and the extensional
viscosity rises very steeply with increasing extension rate. As
a result, the non-shear terms become much larger than the shear
terms. For Newtonian fluids, the extensional viscosity is just three
times the shear viscosity. However, for viscoelastic fluids the shear
and extensional viscosities often behave oppositely, that is while
the shear viscosity is generally a decreasing function of the shear
rate, the extensional viscosity increases as the extension rate
increases. The consequence is that the pressure drop will be gov-
erned by extension-thickening and the apparent viscosity rises
sharply. Other possibilities such as physical retention are less likely
to take place at these high flow rates [21,72].

5. Thixotropy and rheopexy

Time-dependent fluids are defined to be those fluids whose
viscosity depends on the duration of flow under isothermal
conditions. For these fluids, a time-independent steady-state
viscosity is eventually reached in steady flow situation. The time
effect is often reversible though it may be partial, that is the trend of
the viscosity change is overturned in time when the stress is
reduced. The phenomenon is generally attributed to time-depen-
dent thixotropic breakdown or rheopectic buildup of some partic-
ulate structure under relatively high stress followed by structural
change in the opposite direction for lower stress, though the exact
mechanism may not be certain [3,12,16,89,90].

Time-dependent fluids are generally divided into two main
categories: thixotropic (work softening) whose viscosity gradually
decreases with time at a constant shear rate, and rheopectic (work
hardening or anti-thixotropic or negative thixotropic) whose
viscosity increases under similar circumstances without an over-
shoot which is a characteristic feature of viscoelasticity. However, it
has been proposed that rheopexy and negative thixotropy are
different, and hence three categories of time-dependent fluids do
exist [6,12,91]. It is noteworthy that ‘thixotropy’ might be used
conveniently to indicate non-elastic time-dependence in general
where the meaning is obvious.

Thixotropic fluids may be described as shear-thinning while the
rheopectic as shear-thickening, in the sense that these effects take
place on shearing, though they are effects of time-dependence.
However, it is proposed that thixotropy invariably occurs in
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circumstances where the liquid is shear-thinning (in the usual
sense of viscosity decrease with increasing shear rate) while
rheopexy may be associated with shear-thickening. This can be
behind the occasional confusion between thixotropy and shear-
thinning [4,16,48,92].

A substantial number of complex fluids display time-depen-
dence phenomena, with thixotropy being more commonplace and
better understood than rheopexy. Various mathematical models
have been proposed to describe time-dependence behavior. These
include microstructural, continuum mechanics, and structural
kinetics models. Thixotropic and rheopectic behaviors may be
detected by the hysteresis loop test, as well as by the more direct
steady shear test. In the loop test the substance is sheared cyclically
and a graph of stress versus shear rate is obtained. A time-depen-
dent fluid should display a hysteresis loop the area of which is
a measure of the degree of thixotropy or rheopexy and this may be
used to quantify time-dependent behavior [2,3,90—92].

In theory, time-dependence effects can arise from thixotropic
structural change or from viscoelasticity. The existence of these two
different types of time-dependent rheologies is generally recog-
nized. Although it is convenient to distinguish between these as
separate types of phenomena, real fluids can exhibit both types of
rheology at the same time. Several physical distinctions between
viscoelastic and thixotropic time-dependence have been made. The
important one is that while the time-dependence of viscoelastic
fluids arises because the response of stresses and strains in the fluid
to changes in imposed strains and stresses respectively is not
instantaneous, in thixotropic fluids such response is instantaneous
and the time-dependent behavior arises purely because of changes
in the structure of the fluid as a consequence of strain. While the
mathematical theory of viscoelasticity has been developed to an
advanced level, especially on the continuum mechanical front,
relatively little work has been done on thixotropy and rheopexy.
One reason is the lack of a comprehensive framework to describe
the dynamics of thixotropy. This may partly explain why thixotropy
is rarely incorporated in the constitutive equation when modeling
the flow of non-Newtonian fluids. The underlying assumption is
that in these situations the thixotropic effects have a negligible
impact on the resulting flow field, and this allows great mathe-
matical simplifications [32,89,91,93—95].

Several behavioral distinctions can be made to differentiate
between viscoelasticity and thixotropy. These include the presence
or absence of some characteristic elastic features such as recoil and
normal stresses. However, these signs may be of limited use in
some practical situations involving complex fluids where these two
phenomena coexist. In Fig. 9 the behavior of these two types of
fluids in response to step change in strain rate is compared.
Although both fluids show signs of dependency on the past history,
the graph suggests that inelastic thixotropic fluids do not possess
a memory in the same sense as viscoelastic materials. The behav-
ioral differences, such as the absence of elastic effects or the
difference in the characteristic time scale associated with these
phenomena, confirm this suggestion [12,16,92,93].

Thixotropy, like viscoelasticity, is a phenomenon that can appear
in a large number of systems. The time scale for thixotropic changes
is measurable in various materials including important commercial
and biological products. However, the investigation of thixotropy
has been hampered by several difficulties. Consequently, the sug-
gested thixotropic models are unable to present successful quanti-
tative description of thixotropic behavior especially for the transient
state. In fact, even the most characteristic property of thixotropic
fluids, i.e. the decay of viscosity or stress under steady shear
conditions, presents difficulties in modeling and characterization.
The lack of a comprehensive theoretical framework to describe
thixotropy is matched by a severe shortage on the experimental

Thixotropic

Viscoelastic

Stress

Steady-state

Time

Fig. 9. Comparison between time dependency in thixotropic and viscoelastic fluids
following a step increase in strain rate.

side. One reason is the difficulties confronted in measuring thixo-
tropic systems with sufficient accuracy. As a result, very few
systematic data sets can be found in the literature and this deficit
hinders the progress in this field. Moreover, the characterization of
the data in the absence of an agreed-upon mathematical structure
may be questionable [89,90,92,93,96].

5.1. Modeling time-dependent flow in porous media

In the absence of serious attempts to model thixotropic rheology
in porous media using the four major modeling approaches (i.e.
continuum, capillary bundle, numerical methods and network
modeling), very little can be said about this issue. However,
network modeling is currently the best candidate for dealing with
this task. In this context, there are three major cases of simulating
the flow of time-dependent fluids in porous media [44]

e The flow of strongly strain-dependent fluid in a porous
medium that is not very homogeneous. This case is very diffi-
cult to model because of the difficulty to track the fluid
elements in the pores and throats and determine their defor-
mation history. Moreover, the viscosity function is not well
defined due to the mixing of fluid elements with various
deformation history in the individual pores and throats.

e The flow of strain-independent or weakly strain-dependent
fluid through porous media in general. A possible strategy is to
apply single time-dependent viscosity function to all pores and
throats at each instant of time and hence simulating time
development as a sequence of Newtonian states.

e The flow of strongly strain-dependent fluid in a very homo-
geneous porous medium such that the fluid is subject to the
same deformation in all network elements. The strategy for
modeling this flow is to define an effective pore strain rate.
Then using a very small time step the strain rate in the next
instant of time can be found assuming constant strain rate. As
the change in the strain rate is now known, a correction to the
viscosity due to strain-dependency can be introduced.

6. Experimental work on non-Newtonian flow in porous
media

A considerable amount of experimental work has been con-
ducted in the last decades on the non-Newtonian flow through
porous media. However, most of this work is on the flow of polymer
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solutions in packed beds or other simple forms of porous media
using generic time-independent models with possible inclusion of
some viscoelastic attributes. Hence the scopes and techniques are
generally limited and exclude important aspects of non-Newtonian
flow in porous media.

7. Conclusions

In the context of fluid flow, ‘non-Newtonian’ is a generic term
that incorporates a variety of phenomena. These phenomena are
highly complex and require sophisticated mathematical modeling
techniques for proper description. Further complications are added
when considering the flow through porous media. So far no general
methodology that can deal with all cases of non-Newtonian flow
has been developed. Moreover, only modest success has been
achieved by any one of these methodologies. This situation is not
expected to change substantially in the foreseeable future, and
many challenges are still waiting to overcome. In the absence of
a general approach that is suitable for all situations, a combination
of all available approaches is required to tackle non-Newtonian
challenges.

Currently, network modeling is the most realistic choice for
modeling non-Newtonian flow in porous media. While this
approach is capable of predicting the general trend in many situ-
ations, it is still unable to account for all complexities and make
precise predictions in all cases. The way forward is to improve the
modeling strategies and techniques. One requirement is the
improvement of pore space definition. While modeling the con-
verging—diverging feature of the pore space with idealized geom-
etry is a step forward, it is not enough. This feature is only one factor
in the making of the complex structure of flow channels. The actual
geometry and topology in porous media is much more complex and
should be fully considered for successful modeling of flow field.
Including more physics in the flow description at pore level is
another requirement for reaching the final objective.

Nomenclature

o parameter in Ellis model

i rate of strain (s~ 1)

¥ rate of strain tensor

€ porosity

é rate of extension (s~ 1)

M relaxation time (s)

A retardation time (s)

N first time constant in Godfrey model (s)

A second time constant in Godfrey model (s)

As time constant in Stretched Exponential Model (s)
u viscosity (Pa s)

Wi initial-time viscosity (Pa s)

Minf infinite-time viscosity (Pa s)

o zero-shear viscosity (Pa s)

s shear viscosity (Pa s)

Lx extensional (elongational) viscosity (Pa s)

oo infinite-shear viscosity (Pa s)

Ay viscosity deficit associated with A’ in Godfrey model (Pa s)
Ap” viscosity deficit associated with A" in Godfrey model (Pa s)
p fluid mass density (kg m~3)

T stress (Pa)

T stress tensor

12 stress when u = uo/2 in Ellis model (Pa)

To yield-stress (Pa)

c dimensionless constant in Stretched Exponential Model

C consistency factor in power-law and Herschel-Bulkley
models (Pa s™)

c tortuosity factor

D, particle diameter (m)

G flow conductance (m> Pa—'s™1)

K absolute permeability (m?)

L length of tube or bed (m)

n flow behavior index

P pressure (Pa)

AP pressure drop (Pa)

q superficial (Darcy) velocity (m s™1)

Q volumetric flow rate (m> s~ 1)

R tube radius (m)

Req equivalent radius (m)

t time (s)

tc characteristic time of flow system (s)

Tr Trouton ratio

Abbreviations

BKC Blake-Kozeny-Carman

IPM Invasion Percolation with Memory

MTP Minimum Threshold Path

TYP Threshold Yield Pressure

V upper convected time derivative

Note: units, when relevant, are given in the SI system. Vectors and
tensors are marked with boldface. Some symbols may rely on the
context for unambiguous identification.
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